INTERNATIONAL NON-PROFIT ASSOCIATION

ISO 12217-2 SAILING BOATS OF LENGTH GREATER THAN OR EQUAL TO 6 m CALCULATION WORKSHEET No. 1

Design Category intended: Mo	nohull / mul	tihull:			
Item		Symbol	Unit	Value	Ref.
Length of hull as in ISO 8666		L_{H}	m		3.4.1
Length waterline		^L WL	m		
Empty craft condition mass		^m EC	kg		3.5.1
standard equipment			kg		3.6.12
water ballast in tanks which are notified in the owner to be filled whenever the boat is afloat	er's manual		kg		3.5.2
Light craft condition mass = m_{EC} + standard equipmen	it + ballast	^m LC	kg		3.5.2
<u>Mass of:</u> Desired Crew Limit Mass of:		CL	[3.6.3
desired Crew Limit at 75 kg each			kg		3.5.4
provisions + personal effects			kg		3.5.4
drinking water			kg		3.5.4
fuel			kg		3.5.4 3.5.4
lubricating and hydraulic oils			kg		3.5.4 3.5.4
black water			kg		3.5.4
grey water			kg		3.5.4
any other fluids carried aboard (eg: in bait tanks)			kg		3.5.4
stores, spare gear and cargo (if any)	151		kg		3.5.4
optional equipment and fittings not included in basic			kg		3.5.4
inflatable liferaft(s) in excess of essential safety equ other small boats carried aboard	iipment		kg		3.5.4
			kg ka		3.5.4
margin for future additions		1221	kg ka		3.5.4
Maximum load = sum of above masses		^m L	kg		3.5.4
Maximum load condition mass = $m_{LC} + m_{L}$		^m LDC	kg		3.3.4
mass to be removed for Loaded Arrival Condition			kg		3.5.6
Loaded arrival condition mass		^m LA	kg		3.5.6
Mass of:			r		
minimum number of crew according to 3.5.3			kg		3.5.3
non-consumable stores and equipment normally ab	oard		kg		3.5.3
inflatable liferaft			kg		3.5.3
Load to be included in Minimum Operating Condition		^m '∟	kg		3.5.3
Light craft condition mass		^m LC	kg		3.5.2
Mass in the Minimum Operating Condition = $m_{LC} + m'_{L}$		^m MO	kg		3.5.3
Is boat sail or non-sail?					3.1.2
reference sail area according to ISO 8666		AS	m ²		3.4.8
sail area / displacement ratio = $A_{S} / (m_{LDC})^{2/3}$			—		3.1.2
CLASSIFIED AS [non-sail if $A_S/(m_{LDC})^{2/3} < 0,07$]	SA	AIL/NON-SA	AIL ?		3.1.2
NB: : If SAIL, continue using these wor					

ISO 12217-2 CALCULATION WORKSHEET No. 2

TESTS TO BE APPLIED

Question			Answer	Ref.
Is boat fully enclosed? (see definition in ref.)	Y	ES/NO?		3.1.8
Is boat a catamaran or trimaran?	Y	ES/NO?		3.1.3 ; 3.1.4
If NO, choose from options 1 to 7. If YES, then:				
Length of hull	L _H	m		3.4.1
Beam between centres of buoyancy of sidehulls	B _{CB}	m		3.4.5
Is ratio $L_{\rm H}/B_{\rm CB}$ > 5	YE	S / NO?		7.1
If YES, treat the boat as a monohull, and choose from options	s 1 to 7. If N	O, use op	tion 8	
Mass in the minimum operating condition	m _{MO} kg			3.5.3
Mass in the loaded arrival condition	m_{LA}	kg		3.5.6

Choose any ONE of the following options, and use all the worksheets indicated for that option.

		All bo	All boats except catamarans and trimarans with $L_{\rm H}$ / $B_{\rm CB}$ > 5						
Opt	ion	1	2	3	4	5	6	7	8
categories pos	sible	A + B	C + D	C + D	C + D	C + D	C + D	C + D	A – D
decking or cove	ering	fully en- closed	fully en- closed	any amount	any amount	any amount	any amount	any amount	see note a
downflooding o	penings	3	3	3	3	3	3		3
downflooding a	ngle	3	3						
downflooding	all boats	3	3	3		3			3
height test	full method	4	4	4		4			4
recess size		5 ^b	5 ^c			5 ^c	5 ^c		5 ^c
minimum energ	ју	6	6						
angle of vanish	ing stability	6	6						
stability index		7	7						
knockdown-red	overy test			8	8				
wind stiffness to	est					9	9		
flotation require	ement				10		10		10 ^d
capsize recove	ry test							11	
bare poles spe	ed								12
wind speed lim	its								13
stability require	ments								14
habitable multil	nulls								14 ^d
detection & ren	noval of water	15	15	15	15	15	15	15	15
SUMMARY		16	16	16	16	16	16	16	16

^a Fully enclosed if category A or B, otherwise any amount.

^b Only applicable to boats using 6.5.2 or having $\phi_V < 90^\circ$.

^c Only applicable to boats of design categories A, B or C that are fully enclosed.

^d Only applicable if boat is defined as habitable according to 3.1.9, and is deemed to be vulnerable to inversion when used in design category – see 7.11.2 & 7.11.3.

Option selected

INTERNATIONAL NON-PROFIT ASSOCIATION

ISO 12217-2 CALCULATION WORKSHEET No. 3

DOWNFLOODING

Downflooding Openings:

Question		Answer	Ref.
Have all appropriate downflooding openings been identified?	YES/NO		6.2.1
Have potential downflooding openings within the boat been identi- fied?	YES/NO		6.2.1.4
Do all closing appliances satisfy ISO 12216?	YES/NO		6.2.1.1
Hatches or opening type windows are not fitted below minimum height above waterline?	YES/NO		6.2.1.2
Seacocks comply with requirements?	YES/NO		6.2.1.3
Are all openings on Category A or B boats fitted with closing appli- ances? (Except openings for ventilation and engine combustion)	YES/NO		6.2.1.5
Categories possible: A or B if all are YES, C or D if first five are YES			6.2.1

Downflooding Angle:

Item	Symbol	Unit	Value	Ref.
Required value:				6.2.3
Cats. A + B = 40°, Cat. C = 35°, Cat. D = 30°	φ _{D(R)}	degrees		Table 3
Actual Downflooding Angle: any opening at m_{MO}	ϕ_{D}	degrees		3.3.2
Actual Downflooding Angle: any opening at m _{LA}	ϕ_{D}	degrees		3.3.2
Method used to determine $\phi_{\rm D}$:				Annex B
Category possible on Downflooding Angle ϕ_D :				6.2.3
Actual Downflooding Angle: to non-quick-draining cockpit	ødс	degrees		3.3.2
Actual Downflooding Angle: to main hatchway	ØDH	degrees		3.3.2

Downflooding Height:

	Requirement		Basic requirement	Reduced value for small openings
		applicable to options 1 to 6 and 8		options 1 to 6 and 8, but only if figures are used
		ref. 6.2.2.2 a)		6.2.2.2 b)
Obtained from F	igure 2 or annex A?			= basic × 0,75
	Max	imum area of sm	nall openings $(50L_{H}^{2})$ (mm ²) =	
Required	Fig. 2 / annex A	Category A		
Downflooding	Fig. 2 / annex A	Category B		
Height	Fig. 2 / annex A	Category C		
$h_{D(R)}$	Fig. 2 / annex A	Category D		
Actual Downfloo	ding Height h _D r	ef: 6.2.2.1		
	Design Ca	tegory possible		
	Overall Design C	ategory possible	e on Downflooding Height = low	est of above

ISO 12217-2 CALCULATION WORKSHEET No. 4

DOWNFLOODING HEIGHT

Calculation using normative annex A assuming use of option

ltem		Sym- bol	Unit	Opening 1	Opening 2	Opening 3	Opening 4
Position of openings:							
Least longitudinal distance	from bow/stern	x	m				
Least transverse distance	_east transverse distance from gunwale		m				
F_1 = greater of $(1 - x/L_H)$ o	r (1 – <i>y</i> /B _H)	<i>F</i> ₁	—				
Size of openings:							
Combined area of openi down-flooding opening	ngs to top of any	а	mm ²				
Longitudinal distance of o	opening from tip of	x'D	m				
Limiting value of $a = (30L_{H})$)2		mm ²				
If $a \ge (30L_{\rm H})^2$, $F_2 = 1,0$)						
If $a < (30L_{\rm H})^2$, $F_2 = 1_{+}$	$\frac{x'_{D}}{L_{H}}\left(\frac{\sqrt{a}}{75L_{H}}-0,4\right)$	<i>F</i> ₂	—				
Size of recesses:							
Volume of recesses whi draining in accordance wit		V_{R}	m ³				
Freeboard amidships (see	3.3.5)	F_{M}	m				
$k = V_{R} / (L_{H} B_{H} F_{M})$		k					
If opening is not a recess, If recess is quick-draining, If recess is not quickdrainii	$F_3 = 0,7$	F ₃					
Displacement:							
Loaded displacement volu	me (see 3.4.5)	VD	m ³				
$B = B_{\rm H}$ for monohulls, $B_{\rm WI}$	for multihulls	В	m				
$F_4 = [(10 \ V_{\rm D})/(L_{\rm H} \cdot B^2)]^{1/3}$		<i>F</i> ₄	_				
Flotation:							
For boats using option 3 of For all other boats,	r 4, $F_5 = 0.8$ $F_5 = 1.0$	F_5					
Required calc. height: =	$F_1 F_2 F_3 F_4 F_5 L_{\rm H} / 15$	$h_{D(R)}$	m				
Required downflooding	Category A	h _{D(R)}	m				
Height with	Category B	$h_{D(R)}$	m				
Limits applied	Category C	h _{D(R)}	m				
(see annex A, Table A.1)	Category D	$h_{D(R)}$	m				
Measured Downflooding	Height:	h _D	m				
	Design Catego	ry pos	ssible:				
		-			owest of	above =	

INTERNATIONAL NON-PROFIT ASSOCIATION

ISO 12217-2 CALCULATION WORKSHEET No. 5a

RECESS SIZE

NB: This sheet is to be completed for the Loaded Arrival Condition.

			Va	lue	
Item	Symbol	Unit	Recess 1	Recess 2	Ref.
Angle of vanishing stability > 90°?		YES/NO			6.3.1a)
Depth recess < 3% max breadth of the recess over >35 periphery?	5% of	YES/NO			6.3.1b)
Bulwark height < B_H /8 and has \ge 5% drainage area in the lowest 25%?		YES/NO			6.3.1c)
Drainage area per side (m ²) divided by recess volume (m³)				6.3.1d)
Height position of drainage area (lowest 25% / lowest 50% / full depth)					6.3.1d)
Drainage area meets requirements 1) and 2)?		YES/NO			6.3.1d)
Recess exempt from size limit?		YES/NO			6.3.1
SIMPLIFIED METHOD: Use 1), 2) or 3) below.			Zone 1	Zone 2	
Requirement: from results below, design ca	tegory pos	ssible =			6.3.2.1
Average freeboard to loaded waterline at aft end of recess	F _A	m			6.3.2.1
Average freeboard to loaded waterline at sides of recess	F_{S}	m			6.3.2.1
Average freeboard to loaded waterline at forward end of recess	F_{F}	m			6.3.2.1
Average freeboard to recess periphery = $(F_A + 2F_S + F_F) / 4$	F _R	m			6.3.2.1
Category A permitted percentage loss in metacentric he $(GM_T) = 250 F_R / L_H$	Category A permitted percentage loss in metacentric height				6.3.2.1
Category B permitted percentage loss in metacentric height $(GM_T) = 550 F_R / L_H$					6.3.2.1
Category C permitted percentage loss in metacentric he (GM_T) = 1 200 F_R / L_H	eight				6.3.2.1

Continued on worksheet 5b

INTERNATIONAL NON-PROFIT ASSOCIATION

ISO 12217-2 CALCULATION WORKSHEET No. 5b

RECESS SIZE

Item	Symbol	Unit	Value		Ref.
SIMPLIFIED METHOD: Use 1), 2) or 3) below.			Zone 1	Zone 2	
1) Loss of GM _T used?	YES /	NO			6.3.2.2
second moment of area of free-surface of recess	SMA RECESS	m ⁴			6.3.2.2
metacentric height of boat at m_{LA}	GM_{T}	m			6.3.2.2
Calculated percentage loss in metacentric height					
(<i>GM</i> _T) =	$= \frac{102500 \times 100}{m_{LA} \times 100}$	$\frac{SMA_{RECESS}}{GM_{T}}$			6.3.2.2
2) Second moment of areas used?	YES	/ NO			6.3.2.3
second moment of area of free-surface of recess	SMA RECESS	m ⁴			6.3.2.3
second moment of area of waterplane of boat at $m_{\rm LA}$	SMA WP	m ⁴			6.3.2.3
Calculated percentage loss in metacentric height (GM _T):		6.3.2.3			
3) Recess dimensions used?	YES	NO			6.3.2.4
maximum length of recess at the retention level	l	m			6.3.2.4
(see 3.5.11)					
maximum breadth of recess at the retention level	b	m			6.3.2.4
(see 3.5.11)					
Calculated percentage loss in metacentric height (GM_T)	$= 240 \left(\frac{l}{L_{H}} \right)$	$\left(\frac{\times b^3}{\times B_H^3}\right)^{0,7}$			6.3.2.4
DIRECT CALCULATION METHOD used?	YE	S / NO			6.3.3
percentage full of water = $60 - 240 F / L_H$					6.3.3a)
actual residual righting moment up to ϕ_D , ϕ_V or 90° whichever is N·m least					6.3.3b)
required residual righting moment up to $\phi_{\rm D}, \phi_{\rm V}$ or 90° whichever is N·m least					6.3.3b)
design category possible					
Design category achieved					

NB: This sheet is to be completed for the Loaded Arrival Condition.

ISO 12217-2 CALCULATION WORKSHEET No. 6

IO. 6 MINIMUM RIGHTING ENERGY & ANGLE OF VANISHING STABILITY

Minimum righting energy:

Item	Symbol	Unit	<i>т</i> мо	Ref.
Mass in minimum operating condition	m _{MO}	kg		3.5.3
Area under GZ curve up to $\phi_V m_{MO}$	A_{GZ}	m∙deg		6.4
Righting energy up to $\phi_V = m_{MO} \cdot A_{GZ}$	E_{GZ}	kg·m·deg		6.4
Requirement: For Category A: $E_{GZ} \ge 172\ 000$; for Category		Table 4		
Category p				

Angle of vanishing stability:

Item	Symbol	Unit	^т мо	$m_{\sf LA}$	Ref.		
Required value of angle of vanishing stability:							
Category A = $(130 - m/500)$ but $\ge 100^{\circ}$ Category B = $(130 - m/200)$ but $\ge 95^{\circ}$ Category C = 90° Category D = 75°	∲ V(R)	degree			Table 5		
Actual angle of vanishing stability:	ϕ_{V}	degree			3.4.10		
Category possible on angle	Category possible on angle of vanishing stability:						

Alternative for Design Category B only:

Item	Symbol	Unit	^т мо	m _{LA}	Ref.
Mass of boat in each condition	$m_{\rm MO}$ or $m_{\rm LA}$	kg			3.5.3 or 3.5.6
Required value of $\phi_V = (130 - 0,005m)$ but always $\ge 75^{\circ}$		degree			6.5.2a)
Actual angle of vanishing stability:	ϕ_V	degree			3.4.11
Required value of ϕ_V	$\phi_{V(R)}$	degree			6.5.2a)
Is required value of ϕ_V attained?		YES / NO			6.5.2a)
Volume of buoyancy calculated according to annex D	VB	m ³	·		annex D
Mass of boat in maximum load condition	m _{LDC}	kg			3.5.5
Is $V_{\rm B} > (m_{\rm LDC}/850)$?		YES / NO			6.5.2b)
Are accesses to non-habitable compartments fitted with h watertight to degree 2 and marked "Keep shut when under		rs YES / NO			6.5.2c)
Do flotation elements (where fitted) comply with annex E		YES / NO			6.5.2d)
Is stability information required by 6.5.2e) supplied?		YES / NO			6.5.2e)
Are safety signs according to Figure 3 displayed?		YES / NO			6.5.2f)
Can boat be assigned Design Category B? If all answe	ers are YES	YES / NO			6.5.2

INTERNATIONAL NON-PROFIT ASSOCIATION

ISO 12217-2 CALCULATION WORKSHEET No. 7

STABILITY INDEX

Stability Index (STIX):

complete both columns

Factor	Item	Symbol	Unit	^{<i>т</i>} мо	m _{LA}	Ref.
	Positive area under GZ curve to ϕ_V	A _{GZ}	m deg.			6.6.2
FDS	Length of hull	L _H	m			3.4.1
(6.6.2)	Factor as calculated = A_{GZ} /(15,81 $L_{H}^{0,5}$)	FDS	_			6.6.2
	FDS when limited to the range 0,5 to 1,5	FDS	_			6.6.2
	Angle of vanishing stability	ϕ_{V}	degree			3.4.10
FIR (6.6.3)	If $m < 40,000$, FIR = $\phi_V/(125 - m/1\ 600)$ If $m \ge 40,000$, FIR = $\phi_V/100$	FIR				6.6.3
	FIR when limited to the range 0,4 to 1,5	FIR				6.6.3
	Righting lever at 90° heel	GZ ₉₀	m			6.6.4
	Reference sail area (see ISO 8666)	As	m ²			3.4.8
	Height of centre of area of A_{S} above waterline	h _{CE}	m			6.6.4
FKR	Calculate $F_{R} = (GZ_{90} m)/(2 A_{S} h_{CE})$	F_{R}				6.6.4
(6.6.4) If $F_{R} \ge 1,5$, FKR = (0,875 + 0,0833 F_{R}) If $F_{R} < 1,5$, FKR = (0,5 + 0,333 F_{R}) If $\phi_{V} < 90^{\circ}$, FKR = 0,5		FKR	_			6.6.4
	FKR when limited to the range 0,5 to 1,5	FKR	_			6.6.4
	Length waterline	L_{WL}	m			3.4.2
	Length base size L_{BS} = (2 L_{WL} + L_{H})/3	L _{BS}	m			6.6.5
FDL	Calculate $F_{\rm L} = (L_{\rm BS}/11)^{0,2}$	F_{L}				6.6.5
(6.6.5)	Calculate FDL = $\left\{ 0.6 + \left[\frac{15m_{MO}F_L}{L_{BS}^{3}(333 - 8L_{BS})} \right] \right\}^{0.5}$	FDL	_			6.6.5
	FDL when limited to the range 0,75 to 1,25	FDL	_			6.6.5
	Beam of hull	B _H	m			3.4.3
	Beam waterline	B_{WL}	m			3.4.4
FBD	Calculate $F_{\rm B}$ = 3,3 $B_{\rm H}$ / (0,03 m) ^{1/3}	FB				6.6.6
(6.6.6)	If $F_B > 2,20$ FBD = $[13,31 B_{WL}/(B_H F_B^3)]^{0,5}$ If $F_B < 1,45$ FBD = $[B_{WL}F_B^2/(1,682 B_H)]^{0,5}$ OtherwiseFBD = 1,118 $(B_{WL}/B_H)^{0,5}$,	FBD	_			6.6.6
	FBD when limited to the range 0,75 to 1,25	FBD	_			6.6.6
	Downflooding angle = lesser of ϕ_{DC} and ϕ_{DH}	ϕ_{D}	degree			3.3.2
	If $\phi_D \ge 90^\circ$ (see worksheet 3) then FWM = 1,0 If ϕ_D is less than 90° then:					
	Lever from centre of sall area to underwater profile		m			6.6.7
FWM			m			6.6.7
(6.6.7)	Calc. wind speed at which serious flooding occurs = $\{13 \ m_{MO} \ GZ_D / [A_S \ (h_{CE} + h_{LP}) \ \cos \phi_D ^{1,3}] \}^{0,5}$	VAW	m/s			6.6.7
	If $\phi_{DW} < 90^{\circ}$, FWM = $v_{AW}/17$; if $\phi_{DW} \ge 90^{\circ}$, FWM = 1,0	FWM				6.6.7
	FWM when limited to the range 0,5 to 1,0	FWM				6.6.7

INTERNATIONAL NON-PROFIT ASSOCIATION

ISO 12217-2 CALCULATION WORKSHEET No. 7 (continued)

STABILITY INDEX

complete both columns

Factor	Item	Symbol	Unit	^т мо	m_{LA}	Ref.
	Downflooding angle to non-quick-draining cockpit	φ _{DC}	degree			3.3.2
	Downflooding angle to main access hatch	ØDH	degree			3.3.2
	Total area of openings for finding $\phi_{DA} = (1, 2L_HB_HF_M)$ cm ²				6.6.8	
FDF	Downflooding angle at which above area is immersed	ϕ_{DA}	degree			6.6.8
(6.6.8)	Angle of vanishing stability	$\phi_{\sf V}$	degree			3.4.11
	Least of the above four angles	<i>∲</i> DF	degree			6.6.8
	Then FDF = $\phi_{\rm DF}/90$					6.6.8
	FDF when limited to the range 0,5 to 1,25 FDF ₁ —				6.6.8	
	Does boat float acc. to 7.6 and also when flooded have			6.6.8		
	If YES, calculate final FDF = 1,2·FDF ₁ , otherwise FDF =				6.6.8	

NB: Final value to be used for each factor is the figure in the shaded box.

Calculation of STIX, and assignment of Design Category:

Item	Symbol	Unit	<i>m</i> _{MO}	m _{LDC}	Ref.
Length base size L_{BS} (from Worksheet 5) = (2 $L_{WL}+L_H$)/3	L _{BS}	m			6.6.9
Product of all 7 factors = FDS · FIR · FKR · FDL · FBD · FWM · FDF	F	—			6.6.9
STIX = $[(7 + 2,25 L_{BS}) \cdot F^{0,5}]$ STIX —					6.6.9
Design Category possible on STIX: A when STIX > 32, B when STIX > 23, C when STIX > 14, D when			Table 6		

INTERNATIONAL NON-PROFIT ASSOCIATION

ISO 12217-2 CALCULATION WORKSHEET No. 8

KNOCKDOWN-RECOVERY TEST

Design Categories C and D only

Item	Symbol	Cat. C	Cat. D	Ref.
Experimental method:				
Crew Limit	CL			3.6.3
Is boat prepared and persons positioned as in 6.7.2,			6.7.2,	
Is water or other weight used instead of persons, if so which?			6.7.2	
Masthead taken to		waterline	horizontal	6.7.3, 6.7.4
Masthead held in position for		60 s	10 s	6.7.3, 6.7.4
Boat recovers when released, Y	ES/NO?			6.7.3, 6.7.4
Boat floats so it can be pumped or bailed out, Y	ES/NO?			6.7.3, 6.7.4
If boat achieves YES to each of above, Design Category is	ок			
Alternative theoretical method:				
Is GZ positive at heel angle defined above?	'ES/NO?			6.7.5
Design Category given:				

INTERNATIONAL NON-PROFIT ASSOCIATION

ISO 12217-2 CALCULATION WORKSHEET No. 9

WIND STIFFNESS TEST

Design Categories C and D only

Experimental method:

Item		Unit	Un- reefed	Reefed	Ref.
Boat prepared and weight positioned as in 6.8.2,	YES	/ NO?			6.8.2.1
Final tension in pull-down line	Т	kg			6.8.2.3
Perpendicular lever between pull-down and mooring lines	h	m			6.8.2.3 Figure 5
Final angle of heel observed	ϕ_{T}	degree			6.8.2.3
Beam of hull	B _H	m			3.4.3
Actual profile projected area of sails, including overlaps	A's	m²			3.4.9
Upright lever from centre of sail area to underwater profile	$h'_{CE} + h_{LP}$	m			6.8.2.4 Figure 6
Calculated wind speed = $\sqrt{\frac{13hT + 390B_H}{A'_s (h'_{CE} + h_{LP})(\cos\phi_T)^{1.3}}}$	νw	m/s			6.8.2.4
Is reefed sail plan used? YES/NO?					6.8.4.2
Design Category given according to Table 7.			Table 7		

NB: Safety signs in accordance with Figure 7 must be affixed to the boat.

Alternative theoretical method:

Item		Unit	Un- reefed	Reefed	Ref.
Righting moment curve increased by one crew to windward			6.8.3.2		
Option (from Worksheet 2) being used					Table 2
Design Category intended					
Relevant calculation wind speed taken from Table 6	νw	m/s			Table 6
Actual profile projected area of sails, including overlaps	A's	m²			3.4.9
Upright lever from centre of sail area to underwater profile	$h'_{\sf CE}$ + $h_{\sf LP}$	m			6.8.2.4 Figure 6
Calculate: 0,75 $v_W^2 A'_S (h'_{CE} + h_{LP})$	M _{W0}	N∙m			6.8.3.3
From righting moment curve and wind heeling curve $[= M_{W0} (\cos \phi)^{1,3}]$ resulting angle of heel =	φ degree				6.8.3.4
Is $\phi < \phi_D$ (see Worksheet 3) and < 45°?	YES/	NO?			6.8.3.4
Is reefed sail plan used?	YES/NO?				6.8.4.2
If YES, Design Category given:					

NB: Safety signs in accordance with Figure 7 must be affixed to the boat.

INTERNATIONAL NON-PROFIT ASSOCIATION

ISO 12217-2 CALCULATION WORKSHEET No. 10 FLOTATION REQUIREMENT

Annex D

Objective: to show that the buoyancy available from the hull structure, fittings and flotation elements equals or exceeds that required to support the loaded boat.

ltem	Mass kg	Density kg/m ³	Volume m ³ = mass/density	Ref.
Hull structure:		4.500		
GRP laminate		1 500		Table D.1
Foam core materials		50		Table D.1
Balsa core materials		150		Table D.1
Plywood		600		Table D.1
Other timber (type =)				Table D.1
Permanent ballast (type =)				Table D.1
Fastenings and other metalwork (type=)				Table D.1
Windows (glass / plastic)				Table D.1
Engines and other fittings and equipment: Diesel engine(s)		5 000		Table D.1
Petrol engine(s)		4 000		Table D.1
Outboard engine(s)		3 000		Table D.1
Sail-drive or stern-drive strut(s)		3 000		Table D.1
Mast(s) and spar(s) (material = alloy / spruce)				Table D.1
Stowed sails and ropes		1 200		Table D.1
Food and other stores		2 000		Table D.1
Miscellaneous equipment		2 000		Table D.1
Non-integral fuel tank(s) (material =)				Table D.1
Non-integral water tank(s) (material =)				Table D.1
Gross volumes of fixed tanks and air containers:				D.2.2
Fuel tank(s)				D.2.2
Water tank(s)				D.2.2
Other tank(s)				D.2.2
Air tanks or containers meeting the requirements of a	annex E			D.2.2
Total volume of hull, fittings and equipment, $V_{\rm B}$ = umes		D.2.2		
Mass in maximum load condition	m _{LDC}	kg		3.5.5
	calculate ra	tio m_{LDC}/V_B =		D.2.3
For options 4 and 6, $m_{LDC}/V_B < 850$		YES/NO?		D.2.3

ISO 12217-2 CALCULATION WORKSHEET No. 11 CAPSIZE-RECOVERY TEST

Design Categories C and D only

Objective: to demonstrate that a boat can be returned to the upright after a capsize by the actions of the crew using their body action and/or righting devices purposely designed and permanently fitted to the boat, that it will subsequently float, and to verify that the recommended minimum crew mass is sufficient for the recovery method used.

Item	Unit	Value	Ref.
Minimum number of crew required	—		6.10.7
Minimum mass of crew required	kg		6.10.7
Is boat prepared as in 6.10.2 to 6.10.5	YES/NO?		6.10.2 to 6.10.5
Does boat float for > 5 min when fully capsized	YES/NO?		6.10.6
Time required to right the boat (least time of 1 to 3 attempts)	minutes		6.10.8
Is this time less than 5 min	YES/NO?		6.10.8
With one 75 kg person aboard, boat floats so it can be pumped or bail	ed out, YES/NO?		6.10.10
With full Crew Limit aboard, without bailing, boat floats approx. level w 2/3 periphery showing, for more than 5 min	ith at least YES/NO?		6.10.11

INFORMATION FOR OWNER'S MANUAL:

Likelihood of capsize occurring in normal use:

Righting	technique	which i	is most	successful:
----------	-----------	---------	---------	-------------

Minimum number of crew required:	Minimum mass of crew required:	kg
Design category recommended by the build	der:	

ISO 12217-2 CALCULATION WORKSHEET No. 12

Boat is a catamaran/trimaran:Intended Design Category: Refer to 7.7

ltem	Transverse			L	ongitudinal	
Limiting moment	LM _T (ki	N.m) =		<i>LM</i> _L (kN.m) =		
	area (m ²) =			area (m ²) =		
Hull	lever (m) =			lever (m) =		
	moment (m ³)	area x lever =		moment (m ³)	area x lever =	
	area (m ²) =			area (m ²) =		
Mast No. 1	lever (m) =			lever (m) =		
	moment (m ³)	area x lever =		moment (m ³)	area x lever =	
	area (m ²) =			area (m ²) =		
Boom No. 1	lever (m) =			lever (m) =		
	moment (m ³)	area x lever =		moment (m ³)	area x lever =	
	area (m ²) =			area (m ²) =		
Mast No. 2	lever (m) =			lever (m) =		
	moment (m ³)	area x lever =		moment (m ³)	area x lever =	
	area (m ²) =			area (m ²) =		
Boom No. 2	lever (m) =			lever (m) =		
	moment (m ³)	area x lever =		moment (m ³)	area x lever =	
Antennae with area	area (m ²) =			area (m ²) =		
greater than 0,01m ²	lever (m) =			lever (m) =		
groater than e,e ini	moment (m ³)	area x lever =		moment (m ³)	area x lever =	
	area (m ²) =			area (m ²) =		
Standing rigging	lever (m) =			lever (m) =		
	moment (m ³)	area x lever =		moment (m ³)	area x lever =	
Total hull & rig	moments of are	ea $\Sigma(A_{H}.h_{H}) =$		Total hull/rig r	nmt of area =	
	area (m ²) =			area (m²) =		
Sail stowed on boom No. 1	lever (m) =			lever (m) =		
5001111011	moment (m ³)	area x lever =		moment (m ³)	area x lever =	
Roller furled sail No.	area (m ²) =			area (m ²) =		
1 (ovoluding in most	lever (m) =			lever (m) =		
(excluding in-mast furling)	moment (m ³)	area x lever =		moment (m ³)	area x lever =	
Roller furled sail No.	area (m ²) =			area (m ²) =		
2	lever (m) =			lever (m) =		
(excluding in-mast furling)	moment (m ³)	area x lever =		moment (m ³)	area x lever =	
Total bare poles	moment of area	$\Sigma(A_{\sf BP}.h_{\sf BP}) =$		Total bare pole	es mmt area =	
	area (m ²) =			area (m ²) =		
Wing mast	lever (m) =			lever (m) =		
	moment (m ³)	$\sum (A_{\text{WM}}.h_{\text{WM}}) =$		moment (m ³)	$\sum (A_{\text{WM}}.h_{\text{WM}}) =$	
Bare Poles speed, $v_{BP} = 1.85 \sqrt{\frac{1}{0.8\Sigma(A_{BP})}}$	$\frac{LM_T}{(h_{BP}) + \Sigma(A_{WM}.h_{WM})}$			$1,85\sqrt{\frac{1}{0,8\Sigma(A_{BP}.h)}}$	$\frac{LM_{L}}{BP} + \Sigma(A_{WM}.h_{WM})$	
Lesser	Lesser value of v_{BP} in roll and pitch =					

BARE POLES FACTOR

INTERNATIONAL NON-PROFIT ASSOCIATION

ISO 12217-2 CALCULATION WORKSHEET No. 13

WIND SPEED LIMITS

This work sheet is to be used as many times as necessary to cover the range of probable sail combinations.

Boat is a catamaran/trimaran:Intended Design Category: Refer to 7.5

ltem	Transverse L			Longitudinal		
Limiting moment	imiting moment LM_{T} (kN.m) =				LM_{L} (kN.m) =	
Total hull & rig	Total hull & rig moments of area $\Sigma(A_{H}.h_{H})$ =			Total hull/rig	mmt of area =	
Sail No. 1	area (m ²) =			area (m ²) =		
	lever (m) =			lever (m) =		
	moment (m ³)	area x lever =		moment (m ³)	area x lever =	
Sail No. 2	area (m ²) =			area (m²) =		
	lever (m) =			lever (m) =		
	moment (m ³)	area x lever =		moment (m ³)	area x lever =	
Sail No. 3	area (m²) =			area (m²) =		
	lever (m) =			lever (m) =		
	moment (m ³)	area x lever =		moment (m ³)	area x lever =	
Sail No. 4	area (m²) =			area (m²) =		
	lever (m) =			lever (m) =		
	moment (m ³)	area x lever =		moment (m ³)	area x lever =	
Sail stowed on	area (m²) =			area (m ²) =		
boom	lever (m) =			lever (m) =		
	moment (m ³)	area x lever =		moment (m ³)	area x lever =	
Sail stowed on	area (m ²) =			area (m ²) =		
boom	lever (m) =			lever (m) =		
	moment (m ³)	area x lever =		moment (m ³)	area x lever =	
Roller furled sail	area (m ²) =			area (m ²) =		
	lever (m) =			lever (m) =		
	moment (m ³)	area x lever =		moment (m ³)	area x lever =	
Roller furled sail	area (m²) =			area (m ²) =		
	lever (m) =			lever (m) =		
	moment (m ³)	area x lever =		moment (m ³)	area x lever =	
Total sail	Total sail moments of area $\mathcal{E}(A_{\rm S}, h_{\rm S})$ = Wind speed limit, $v_{\rm W}$ = 1,85 $\sqrt{\frac{LM_T}{0,8\Sigma(A_H, h_H) + \Sigma(A_S, h_S)}}$ =			Total sail mor	ment of area =	
				1,85 $\sqrt{\frac{1}{0.8\Sigma(A_H)}}$	$\frac{LM_{L}}{h_{H} + \Sigma(A_{S},h_{S})} =$	
Lesser	value of v _W in r	oll and pitch =				

NB: Where a boat is fitted with a wing mast, it shall be treated as a sail.

INTERNATIONAL NON-PROFIT ASSOCIATION

ISO 12217-2 CALCULATION WORKSHEET No. 14

STABILITY REQUIREMENTS

Boat is a catamaran/trimaran:

Intended Design Category:

ltem Symbo	J Unit	Value			Ref.	
		Cat A	Cat B	Cat C	Nel.	
Bare Poles Factor						
Bare Poles wind speed (see worksheet 12) v_{BP}	knots				7.7	
Bare Poles Factor = $\left(\frac{v_{BP}}{70}\right)^{0,4}$ where $v_{BP} < 70$ BPF	-				7.7b)	
= 1,0 where $v_{BP} \ge 70$						
Rolling in breaking waves			1			
Required maximum transverse righting lever GZ	m				Table 8	
Actual maximum transverse righting lever	m					
Design category possible for rolling in breaking waves	YES / NO				7.8	
Ratio (actual) / (required)					7.11.23	
Does ratio exceed that for "not vulnerable to inversion"? (1,35 for catamarans, 1,80 for trimarans)	YES / NO				7.11.23	
Pitchpoling						
Required minimum longitudinal righting moment area	kN⋅m⋅rad				Table 9	
Actual minimum longitudinal righting moment area	kN·m·rad					
Design category possible on pitchpoling	YES / NO				7.9	
Ratio (actual) / (required)					7.11.23	
Does ratio exceed that for "not vulnerable to inversion"? (1,35 for catamarans, 1,80 for trimarans)	YES / NO				7.11.23	
Diagonal stability						
Required transverse righting moment for 1° heel	N∙m		1 500	n/a	7.10	
Bow down actual transverse righting moment for 1° heel	N∙m			n/a	7.10	
Stern down actual transverse righting moment for 1° heel	N∙m			n/a	7.10	
Design category possible on diagonal stability?	YES / NO			n/a	7.10	
Design cat. possible: rolling, pitchpoling & diag stability	YES / NO					

Habitable boats

Habitable boats		Answer	Ref.
Is boat habitable?	YES / NO		3.1.9
Is boat vulnerable to inversion when used in design category?	YES / NO		7.11.23
Clause(s) of standard that apply ref vulnerability to inversion			7.11.23
If both the above responses are YES, then:			
Does boat comply with inverted buoyancy requirements? (see worksheet 10)	YES / NO		7.12
Does boat comply with viable means of escape requirements?	YES / NO		7.13

ISO 12217-2 CALCULATION WORKSHEET No.15 DETECTION + REMOVAL OF WATER

Item	Unit	Re- sponse	Ref.
The internal arrangement facilitates the drainage of water to point(s), to a location from which it may be bailed rapidly, or board?		6.11.1	
Is boat provided with means of removing water from the bilg ance with ISO 15083?		6.11.2	
Table 2 option used for assessment:			6.11.3
Can water in boat be detected from helm position?	YES/NO		6.11.3
Method(s) used:			
direct visu		6.11.3	
transparent insp		6.11.3	
		6.11.3	
indication of the operation of automatic		6.11.3	
other means (specify):		6.11.3	

INTERNATIONAL NON-PROFIT ASSOCIATION

ISO 12217-2 CALCULATION WORKSHEET No. 16

SUMMARY

Sheet	Item	Symbo	bl	Unit	Value	
	Length of hull: (as in ISO 8666)	L_{H}		m		
	Length waterline	L _{WL}		m		
	Mass:					
1	Empty craft condition mass	m _{EC}		kg		
	Light craft condition mass	m _{LC}		kg		
	Maximum load	m_{L}		kg		
	Maximum load condition mass = $m_{LC} + m_{L}$	m _{LDC}		kg		
	Loaded arrival condition mass	m_{LA}		kg		
	Minimum operating mass	m _{MO}		kg		
1	Is boat sail or non-sail?	SAIL / NO	N-SAIL			
2	Option selected:					
		Unit	Re- quired	Actual	Pass/Fail	
	Downflooding openings: are all requirements met?	·				
3	Downflooding angle : to any opening, ϕ_{DA}	degree	>			
	to non-quick-draining cockpit, ϕ_{DC}	degree				
	to main access hatchway, <i>φ</i> _{DH}	degree				
	Downflooding height: Worksheet employed for basic height					
3 and 4	basic requirement	m	≥			
	reduced height for small openings (sheet 3 only)	m	≥			
5 and 6	Stability index: (options 1 + 2 only) STIX =	—	>			
6	Angle of vanishing stability: (options 1 + 2 only) ϕ_V =	degree	>			
	Knockdown-recovery test: (options 3 + 4 only) PASS/FAIL?					
7	method used = experimental or theoretical?					
	Design Category =					
	Wind stiffness test: (options 5 + 6 only) v_{W} =	m/s	>			
8	Design Category =					
	was reefed sail area used? (i.e.: are warning labels required?) YES / NO					
9	Flotation requirement: ratio m_{LDC}/V_B = (options 4, 6 + 8 only)	kg/m ³	<			
10	Capsize recovery test: (option 7 only) are all requirements met? YES / NO					
	Design Category recommended by the builder					
	Stability information: (option 8 only) info. supplied like Table F.1 YES/NO					

ISO 12217-2 CALCULATION WORKSHEET No. 16

SUMMARY (continued)

Sheet	Item		Unit	Re- quired	Ac- tual	Pass/Fail
13	Rolling in breaking waves maximum trans- verse righting lever		m	≥		
	Pitchpoling longitudinal righting moment area		kN·m·rad	≥		
	Diagonal stability: transverse right- ing moment for 1° heel	bow down	N∙m	≥		
		stern down	N∙m	2		
	Habitable boats					
	Is boat habitable?					
13	Is boat vulnerable to inversion when used in design category?					
	If both the above responses are YES, then:					
	Does boat comply with inverted buoyancy requirements?					
	Does boat comply with viable means of escape requirements?					
N	B: Boat must pass all requirements applica	able to op	otion to be gi	ven intended	Design (Category.
Design ca	ategory given:	Assess	sed by:			